Trajectory Correction and Locomotion Analysis of a Hexapod Walking Robot with Semi-Round Rigid Feet

نویسندگان

  • Ya-Guang Zhu
  • Bo Jin
  • Yongsheng Wu
  • Tong Guo
  • Xiangmo Zhao
چکیده

Aimed at solving the misplaced body trajectory problem caused by the rolling of semi-round rigid feet when a robot is walking, a legged kinematic trajectory correction methodology based on the Least Squares Support Vector Machine (LS-SVM) is proposed. The concept of ideal foothold is put forward for the three-dimensional kinematic model modification of a robot leg, and the deviation value between the ideal foothold and real foothold is analyzed. The forward/inverse kinematic solutions between the ideal foothold and joint angular vectors are formulated and the problem of direct/inverse kinematic nonlinear mapping is solved by using the LS-SVM. Compared with the previous approximation method, this correction methodology has better accuracy and faster calculation speed with regards to inverse kinematics solutions. Experiments on a leg platform and a hexapod walking robot are conducted with multi-sensors for the analysis of foot tip trajectory, base joint vibration, contact force impact, direction deviation, and power consumption, respectively. The comparative analysis shows that the trajectory correction methodology can effectively correct the joint trajectory, thus eliminating the contact force influence of semi-round rigid feet, significantly improving the locomotion of the walking robot and reducing the total power consumption of the system.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Hexapod Control through a Fractional Algorithm

This paper studies the performance of a Fractional Order controller in a hexapod robot with joint leg actuators having saturation. For that objective the robot prescribed motion is characterized in terms of several locomotion variables. Moreover, two indices measure the walking performance based on the mean absolute density of energy per travelled distance and on the hip trajectory errors. A se...

متن کامل

Kinematic and Gait Analysis Implementation of an Experimental Radially Symmetric Six-Legged Walking Robot

As a robot could be stable statically standing on three or more legs, a six legged walking robot can be highly flexible in movements and perform different missions without dealing with serious kinematic and dynamic problems. An experimental six legged walking robot with 18 degrees of freedom is studied and built in this paper. The kinematic and gait analysis formulations are demonstrated by an e...

متن کامل

Locomotion analysis of hexapod robot

Multi-legged robots display significant advantages with respect to wheeled ones for walking over rough terrain because they do not need continuous contact with the ground. In Multi-legged robots, hexapod robots, mechanical vehicles that walk on six legs, have attracted considerable attention in recent decades. There are several benefits for hexapods rover. (a) Hexapod robot is easy to maintain ...

متن کامل

Research on Hexapod Walking Bio-robot’s Workspace and Flexibility

Because of the natural selection and the long period evolution of various animals in the nature, the animals generates the strong adaptability to the surroundings on energy conversion, locomotion control, gesture adjustment, information processing and discerning direction. The animals’ structure and function is better than the man-made mechanical equipment’s. Therefore animals are becoming refe...

متن کامل

Optimized Joint Trajectory Model with Customized Genetic Algorithm for Biped Robot Walk

Biped robot locomotion is one of the active research areas in robotics. In this area, real-time stable walking with proper speed is one of the main challenges that needs to be overcome. Central Pattern Generators (CPG) as one of the biological gait generation models, can produce complex nonlinear oscillation as a pattern for walking. In this paper, we propose a model for a biped robot joint tra...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 16  شماره 

صفحات  -

تاریخ انتشار 2016